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Introduction

Every new scientific discipline or meth-

odology reaches a point in its maturation

where it is fruitful for it to turn its gaze

inward, as well as backward. Such intro-

spection helps to clarify the essential

structure of a field of study, facilitating

communication, pedagogy, standardiza-

tion, and the like, while retrospection aids

this process by accounting for its begin-

nings and underpinnings.

In this spirit, PLoS Computational Biology is

launching a new series of themed articles

tracing the roots of bioinformatics. Essays

from prominent workers in the field will

relate how selected scientific, technologi-

cal, economic, and even cultural threads

came to influence the development of the

field we know today. These are not

intended to be review articles, nor person-

al reminiscences, but rather narratives

from individual perspectives about the

origins and foundations of bioinformatics,

and are expected to provide both historical

and technical insights. Ideally, these arti-

cles will offer an archival record of the

field’s development, as well as a human

face on an important segment of science,

for the benefit of current and future

workers.

Upcoming articles, already commis-

sioned, will cover the roots of bioinfor-

matics in structural biology, in evolution-

ary biology, and in artificial intelligence,

with more in the works. These topics are

obviously very broad, and so are likely to

be subdivided or otherwise revisited in

future installments by authors with varying

perspectives. Topics and authors will be

chosen at the discretion of the editors

along lines broadly corresponding to the

usual content of this journal.

The author, having been asked to serve

as Series Editor by the Editor-in-Chief,

will endeavor to maintain a uniform flow

of articles solicited from luminaries in the

field. As a starting point to the series, I

offer below a few vignettes and reflections

on some longer-term influences that have

shaped the discipline. I first consider the

unique status of bioinformatics vis-à-vis

science and technology, and then explore

historical trends in biology and related

fields that anticipated and prepared the

way for bioinformatics. Examining the

context of key moments when computers

were first taken up by early adopters

reveals how deep the roots of bioinfor-

matics go.

The Nature of Bioinformatics

Many who draw a distinction between

bioinformatics and computational biology

portray the former as a tool kit and the

latter as science. All would allow that the

science informs the tools and the tools

enable the science; in any case, bioinfor-

matics and computational biology are near

enough cousins that their origins and early

influences are likely to be commingled as

well. Therefore, this article and series will

construe bioinformatics broadly, bearing

in mind it can thus be expected to have a

dual nature. This duality echoes another

that goes back to Aristotle, between

‘‘episteme’’ (knowledge, especially scientif-

ic) and ‘‘techne’’ (know-how, in the sense

of craft or technology). The power of

bioinformatics might be seen as arising

from their harmonious combination, in

the Greek tradition, lending it emergent

capabilities beyond the simple intersection

of computers and biology, or indeed of

science and engineering.

A Bioinformatics Revolution?
Many commentators refer to the

‘‘bioinformatics revolution.’’ If there has

been one, was it a revolution in techne,

like the Industrial Revolution, or in

episteme, like the Scientific Revolution?

Or was it both? The former suggests

quantum leaps in scale and capability

through automation, which seems to

apply to bioinformatics almost by defini-

tion, while the latter implies an actual

shift in worldview, raising a more philo-

sophical question.

In Thomas Kuhn’s famous conception

of scientific revolutions, the early stages

of paradigm formation are freewheeling

and unstructured, while being effectively

cut off from the pre-existing scientific

milieu by their very novelty and an

inherent incommensurability [1]. (The

overused word ‘‘paradigm’’ can be ex-

cused in this context because it was

Kuhn who instigated its overuse.) At

some point, such ‘‘pre-science’’ becomes

consolidated, establishes norms and

templates, and settles into a ‘‘normal

science’’ phase that allows for efficient

discovery within a prevailing paradigm.

Many would agree that the heady early

days of bioinformatics had a makeshift

feel, which has since matured into a

more coherent, productive discipline

with an established canon.

But before claiming the exalted status of

a Kuhnian paradigm shift, it should be

noted that Kuhn had in mind rather

broader disciplines of science than bioin-

formatics, which was erected within and in

relation to the comprehensive pre-existing

scaffoldings of biology and computer

science. To the extent that bioinformatics

is a subsidiary or derivative field, it might

call more for an evolutionary than a

revolutionary model of development, of a

sort some critics of Kuhn have advocated

[2,3]. From this perspective, its novelty

and force perhaps derive from hybrid

vigor rather than spontaneous generation,

and it would seem to be more enabling

than overturning—thus, primarily an ad-

vance in techne. Whether its rapid uptake

and substantial impact qualify it as a

technological revolution, or merely an

evolutionary saltation, is perhaps only a

matter of semantics.

In Kuhn’s semantics, though, scientific

revolutions produce profound shifts in our

literal perception of reality. A computa-
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tional perspective may radically change

attitudes toward data, or even models of

data, but it seems unlikely to fundamen-

tally alter our sense of reality in the

domain of biology. Still, true believers

may argue that the ‘‘computational think-

ing’’ movement [4] as applied to biology,

and perhaps even a view of life itself as a

form of computation [5], does indeed rise

to the level of a paradigm shift and a true

revolution in episteme. We will explore a

few such ideas below.

The Role of Tools
A philosophical stance called realism

essentially views episteme as independent

of techne, holding that scientific truth is

ultimately separable from how we measure

or model it. But some assign tools a more

prominent and persistent role. The Nobel

laureate physicist P. W. Bridgman’s influ-

ential notions of operationalism sought to

reduce all scientific concepts to the literal

means by which they are measured—that

is, to operational definitions to be taken at

face value rather than as describing some

underlying idealization—so as not to over

interpret or heedlessly conflate such con-

cepts [6]. Thus, temperature would be

defined in terms of thermometers rather

than thermodynamics. Decades before

computer scientists conceived of opera-

tional semantics and abstract data types,

Bridgman considered a scientific concept

‘‘synonymous with the corresponding set

of operations’’ [7]. Though controversial

in physics circles, operationalization was

seized upon by certain ‘‘soft’’ sciences like

sociology as a way of achieving a more

respectable exactitude.

The ‘‘hardening’’ of biology in the 20th

century involved a reductionist conver-

gence with chemistry and physics, en-

hanced by improving instrumentation, as

well as new quantitative overlays to the

legacies of Linneaus, Mendel, and Darwin.

This often called for operationalizations,

such as that of ‘‘enzyme’’ in terms of a

measured activity, or that of the much-

debated concept of ‘‘species’’ [3]. The

practice predated but has lately been

reinforced by bioinformatics. Computers,

with their notorious literal-mindedness,

require the same sort of ‘‘tightening up’’

of descriptive language as that urged by

Bridgman [6], and have promoted ever

more explicitly operational definitions, for

example, of ‘‘gene’’, in terms of the

biological operations applied to DNA

sequences [8].

Bridgman felt that by first recognizing

clearly the distinction between operation-

ally defined concepts such as gravitational

and inertial mass, deeper insights like

Einstein’s equivalence principle would

come more naturally. Today, operational

definitions of biological concepts such as

‘‘gene’’ and ‘‘pathway’’, distinguished as to

whether they are probed by methods

genetic, biochemical, or biophysical, are

providing new insights as they are similarly

integrated, with appropriate caution, by

bioinformatic methods.

The Instrumental Gene
Even scientific theories can be consid-

ered techne. Instrumentalism, an idea that

goes back to the earliest days of the

scientific revolution, takes a very pragmat-

ic, almost mechanical view of theories,

that they should be viewed merely as tools

for predicting or explaining observations

as opposed to directly describing objective

reality [9]. Thus genetics was at first

purely instrumental; regardless of any

conviction that the gene had a physical

basis, it was in practice a conceptual tool

[10]. Instrumentalism doesn’t ask whether

a theory is true or false, but treats it as a

sort of anonymous function taking data as

input and producing predictions or expla-

nations as output, the quality of which

determine the appeal of the theory.

Whether or not this is an adequate

formulation of a scientific theory, it may

be as good a definition as any of a

bioinformatics application.

For a taste of the pre-molecular instru-

mental conception of genes, consider the

moment in 1911 when Alfred Sturtevant

made a key contribution. While still an

undergraduate at Columbia University, he

won a seat in the legendary ‘‘fly room’’ of

T. H. Morgan’s lab, which was busy

identifying Drosophila mutants and count-

ing offspring of various crosses. One day,

upon realizing that multiple pairwise

linkage strengths could not only be viewed

inversely as distances but also collapsed

onto a single dimension, he related that he

‘‘went home and spent most of the night

(to the neglect of my undergraduate

homework) in producing the first chromo-

some map’’ [11]. Long before the advent

of bioinformatics, we nevertheless glimpse

something of its ‘‘style’’ in this approach to

data transformation, integration, and vi-

sualization—not to mention the fact that

the youngest scientists often seem most

adept at data-crunching (evidently even

without benefit of a computer literacy

surpassing that of their elders).

Bioinformatics and Genes
The gene concept has undergone a

steady evolution, in varying degrees in-

strumental and operational [12,13]. The

work of Barbara McClintock, for example,

did much to ground the instrumental gene

in physical locations on chromosomes by

1929 (though soon she in turn introduced

instrumental notions of transposition and

‘‘controlling elements’’ that only became

instantiated decades later in transposons,

operons, and other regulatory apparatus,

resulting in her belated Nobel Prize in

1983 [14]). Bioinformatics has played an

increasingly important role in this evolu-

tion. Mark Gerstein notes that by the

1970s and 1980s, through a combination

of cloning and sequencing techniques and

then computational gene identification

(whether by similarity or protein-coding

signature), the working definition of a gene

was reduced to a literal open reading

frame of sequence—digitized data, in

other words, critically dependent on elec-

tronic storage and algorithms—and that

by the 1990s the gene had become for

most practical purposes an annotated

database entry [13]. Gerstein goes on to

assert that the latest metaphor for genes is

as ‘‘subroutines in the genomic operating

system,’’ which suggests entirely new

senses of operationalism and instrumen-

talism in biology, with a natural role for

bioinformatics.

Yet operationalism and instrumentalism

are often challenged in philosophical

circles today, where they are considered

to be ‘‘anti-realist’’ in their seeming

disregard for the actual physical objects

and processes underlying scientific con-

cepts. In fact, it would appear that

scientific progress is made when opera-

tional concepts are joined up, as by

Einstein, or when instrumental concepts

are mapped to successively more material

forms, as by Sturtevant, McClintock, and

eventually James Watson and Francis

Crick. But this only bears out the func-

tional utility of these ‘‘isms,’’ whose

persistence suggests some underlying

truth; they seem to wrestle with important

concepts such as abstraction and reifica-

tion (that is, concretization of abstractions

as ‘‘first-class objects’’ for further manip-

ulation) that are natural to and even

promoted by the computational sciences.

One thing they certainly assert is that it is

a mistake to trivialize the role of tools in

science as mere means to an end, as

scientific ground truth may be hard to

disentangle from those tools in the final

analysis.

Bioinformatics before
Bioinformatics

Bioinformatics is far from being the first

discipline to straddle the duality of epis-

teme and techne. Mathematics is also
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considered a tool, vis-à-vis science, and

here it is even more apparent how

inseparable is the tool from the underlying

scientific reality. Indeed, since Galileo and

Newton, a common sentiment has been

that science is never so successful as when

its laws and explanations can be reduced

to mathematical expression. Historically

this had not been biology’s forte, but early

in the 20th century statistics and numer-

ical analysis began to establish footholds in

the field. Computers eventually carried

these methods to new heights, though

mainly by automating them rather than

changing their underlying methodologies.

Yet ‘‘pure’’ computer science is itself

discrete math, separable from hardware,

and soon this also would come to bear on

a newly digital biology. As the following

narrative suggests, the roots of bioinfor-

matics may be detected in a mathemati-

zation of biology on many fronts, which

machines only served to accelerate. The

middle of the 20th century witnessed the

key transitions.

Mathematics Sets the Scene
The development of modern statistics

was to a significant degree driven by its

application to biology in the work of

Francis Galton in the 19th century [15]

and R. A. Fisher in the 20th [16]. Fisher

helped put both Mendelism and Darwin-

ism on a firm mathematical footing by

1930, and he is also credited with being

the first to apply a computer to biology,

albeit almost offhandedly. In a 1950 note

giving tables of solutions to a differential

equation developed for population genet-

ics, Fisher says simply ‘‘I owe this

tabulation to Dr. M.V. Wilkes and Mr.

D.J. Wheeler, operating the EDSAC

electronic computer.’’ [17] EDSAC, the

Electronic Delay Storage Automatic Cal-

culator, was built at the University of

Cambridge Mathematical Laboratory; it is

considered the first truly practical stored-

program computer and the inspiration for

the first text on computer programming in

1951 [18].

As biology became more quantitative

throughout the 20th century, it increas-

ingly assumed a ‘‘statistical frame of mind’’

[19]. In addition, naturalists adopted

numerical methods for population model-

ing, and biochemists for enzyme kinetics;

such applications remain the core topics of

mathematical biology texts today. As

noted, statistics and numerical analysis

were considerably empowered by comput-

ers, but later these disciplines in turn

contributed substantially to entirely new

methods such as machine learning and

multiscale mathematical modeling that are

now central elements of bioinformatics.

Today’s systems biology has a pedigree

extending back at least to the first half of

the 20th century. The biologist Ludwig

von Bertalanffy began work on his holistic

General System Theory then [20], while

Norbert Wiener’s cybernetics added an

engineering math perspective in the 1950s

encompassing feedback and regulatory

systems that was influenced not only by

early computer science, but also by

evolutionary biology and cognitive science

[21]. Network theory is often attributed to

Gestalt social psychologists in the 1930s,

but was productively merged with math-

ematical graph theory by 1956 [22].

Developmental biology began a long

flirtation with math upon the publication

in 1917 of D’Arcy Thompson’s On

Growth and Form, which was technically

elegant and visually striking, albeit mostly

descriptive [23]. Computing pioneer Alan

Turing turned to biology during the tragic

denouement of his life and was responsible

in 1952 for a classic work in spatial

modeling of morphogenesis [24], propos-

ing a reaction-diffusion model of pattern

formation that has only recently gained

strong experimental support [25]. In this

period Turing used the Manchester Uni-

versity Mark I, another trailblazing stored-

program machine, to model biological

growth in systems such as the Fibonacci

patterns in fir cones described by D’Arcy

Thompson [26]. Turing’s labors on these

problems are evident in page after page of

calculations interspersed with dense ma-

chine code subroutines set down in his

own hand, now archived at King’s Col-

lege, Cambridge [27].

Turing’s Legacy
Turing’s bequest to biology is far more

sweeping, though, insofar as bioinfor-

matics would eventually embody a broad

computational mathematization of the life

sciences. The changes would be not only

quantitative but also qualitative. As Fisher

realized, ‘‘conventional’’ applications of

numerical analysis could be taken to new

levels, visualized as never before, and often

freed from the necessity of closed-form

solutions, by the sheer power of comput-

ers. But qualitatively, Turing’s first efforts

at biological computing began to shift the

focus from the equations to the phenom-

ena, from calculation to modeling. More-

over, Turing’s overall legacy would soon

foster a new perspective founded in

discrete math, information theory, and

symbolic reasoning, catalyzing trends that

may already have been inchoate in the

new molecular biology.

It is interesting to speculate whether

Turing’s turn toward biology, had he lived

much past the discovery of the double

helix, would have caused him to recognize

and embrace this pivotal moment when

biology became digital. He could not have

failed to remark (as others soon would

[28,29]) how biological macromolecules

incarnated his virtual automata, with

biopolymers for tapes and enzymes to

read and write them. Moreover, as a

veteran of Bletchley Park and the wartime

cryptanalysis effort, he might well have

been drawn into the frenzy to decipher the

genetic code that played out in the decade

after his death.

In 1943 Turing had visited the US to

share British codebreaking methods and

met often with Claude Shannon, who was

working on similar problems at Bell Labs

[30]. Shannon’s efforts on cryptanalysis

were closely tied to his work in commu-

nication that, within the decade, would

give rise to the new field of information

theory. Turing took the opportunity to

show him his 1936 paper on the Universal

Turing Machine, since Shannon had been

responsible in 1937 for the first rigorous

application of Boolean logic as a formal

basis for digital design, which to that point

had comprised much more ad hoc ar-

rangements of circuit elements. This

contribution, which constituted Shannon’s

Master’s thesis, is accorded great signifi-

cance in the history of computing, but

what has been all but forgotten is his 1940

PhD thesis, entitled ‘‘An Algebra for

Theoretical Genetics’’ [31]. In this work,

Shannon formalized population genetics

just as he had circuit design, after spending

an instructive summer at the Cold Spring

Harbor Laboratory. Today it would be

labeled bioinformatics.

One is left to wonder whether Turing

and Shannon ever touched on biology

during their lunchtime discussions. The

geneticist James Crow feels that Shannon

might well have extended his PhD work to

have significant impact in the field but for

the fact that he was drawn irresistibly to

communication theory, first by the war

and then by the lush technical milieu of

Bell Labs [32]. It is intriguing to think that

two giants of computer science and

mathematics may have come so close to

committing their careers to biology.

Enter the Physicists
Instead it was physicists, some of them

veterans of the Manhattan Project, who

migrated to the new molecular biology

and helped imbue it with their mathemat-

ical sensibilities. The attraction can be

discerned in Erwin Shrödinger’s famous
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wartime lectures and 1946 book What is

Life? [33], which influenced Francis Crick

and in turn was stimulated by the work of

physicist-turned-biologist Max Delbrück,

mentor to James Watson. In this slim

volume, Shrödinger posits that chromo-

somes constitute Morse-like ‘‘code-scripts’’

of which ‘‘the all-penetrating mind, once

conceived by Laplace, to which every

causal connection lay immediately open,

could tell from their structure whether the

egg would develop … into a black cock or

a speckled hen …’’ (pp. 20–21). Later, he

suggests that some such executive in fact

resides in the chromosomes themselves—

that they are not only script but also

machinery. This programmatic conceit, in

itself strikingly evocative of Turing’s self-

referential automata and associated

proofs, foretold the scramble to solve the

puzzle of how the DNA sequence mapped

to the other structures of life.

One of the first responses Watson and

Crick had to their seminal 1953 paper was

a letter from the physicist George Gamow,

unknown to them, who 5 years before had

proposed the Big Bang [34]. Gamow was

already fascinated by biology, being

friends with Delbrück and having pub-

lished a popularization of a broad swath of

science entitled One Two Three…Infinity,

which included an exposition of fly

genetics showing Morgan and Sturtevant’s

map [35]. Gamow’s remarkable letter

reimagined the DNA in each chromosome

as a long number written in base four, so

as to open up its analysis to number

theory. He was soon calling this ‘‘the

number of the beast,’’ suggesting that it

varied only slightly among individuals,

‘‘whereas the numbers representing the

members of two different species must

show larger differences’’ [36]. Not only did

Gamow thus neatly frame the future of

sequence bioinformatics, but he went on

to pose the question of the genetic code for

the first time in purely formal terms—that

is, in Crick’s words, ‘‘not cluttered up with

a lot of unnecessary chemical details’’

(quoted by Judson [30]). Postulating a

collinearity of DNA with proteins (having

seen Sanger’s as yet fragmentary insulin

sequences), the question for Gamow was

how to ‘‘translate’’ the four-letter code to a

20-letter code.

Crick credited him with the simple

combinatoric analysis that triplets of

DNA bases would suffice [37], but Ga-

mow seems almost to have recoiled from

the prodigal degeneracy implied by the

leftover information content (i.e., 43 trip-

lets for only 20 amino acids). Certainly

Gamow’s first model was overly compli-

cated, involving as it did an overlapping

and thereby non-degenerate code, as well

as attempting to account for a direct

translation from the DNA helix to the

polypeptide by a physical docking [38].

(This perhaps reflects Shrödinger’s errant

instinct that chromosomes should be self-

sufficient machines, or just enthusiasm for

the astonishing implications of base pair-

ing in the Watson-Crick model.) Still,

Gamow set the game in motion, and

served with great verve as its master of

ceremonies.

Codebreaking
A letter written in 1954 by Gamow to

the biologist Martynas Ycas, preserved in

the Library of Congress complete with

marginal scrawls and cartoon drawings,

suggests the tenor of the times: ‘‘After the

collapse of triplet (major+2 minors) system

a new suggestion was made by Edward

Teller busy as he was with H bomb, and

Oppenheimer. The idea is that each

following aa. is defined by two bases …

and the preceeding AA. Looks good! The

‘preceeding AA’ is characterized only by

beeing [sic] ‘small’, ‘medium’ or ‘large.’

Last week I have discovered in Los Alamos

the possibility of putting that system on

Maniac, and this seems to be possible’’

[39].

What is most significant here is not the

next ill-conceived model to which Gamow

had turned, but rather the reference to

MANIAC I, the Mathematical Analyzer,

Numerical Integrator and Computer built

to do weapons research by Nicholas

Metropolis (of Monte Carlo fame) [40].

Once it was known that RNA directed

protein synthesis, Gamow and Ycas did

indeed use MANIAC to run a series of

Monte Carlo simulations, first trying in

1954 to salvage overlapping codes, and

when those proved untenable, testing in

1955 whether observed amino acid fre-

quencies in proteins were likely to arise

from non-overlapping triplet code transla-

tions [41]. (Metropolis also worked with

others soon afterwards to computationally

model cell multiplication and tumor cell

populations [42,43].)

These first MANIAC runs, requiring

hundreds of hours, represent a new

bioinformatics milestone, extending Tur-

ing’s mathematical modeling of outward

phenotypic patterns to stochastic modeling

of the informational mechanics of life. As

Lily Kay remarks, by ‘‘blurring the

boundary between theory, experiment,

and simulation … MANIAC had become

the site of an artificial reality’’ [44].

Among the many scientists whom Gamow

induced to take a run at the genetic code

was Herbert Simon, who dabbled in this at

the very moment he was beginning to

apply computers to general problem-

solving [44]. Simon would soon co-found

the discipline of artificial intelligence,

another fundament of bioinformatics,

and another field deeply indebted to

Turing. Gamow also recruited Robert

Ledley, who in 1955 wrote a theoretical

paper suggesting how computerized sym-

bolic reasoning could apply not only to the

genetic code but also to enzymatic path-

ways, portending modern pathway infer-

ence techniques [45]. Ledley went on

to promote computer-based medical diag-

nosis and protein sequence tools and

databases.

The Urge to Model
The non-overlapping code Gamow and

Ycas had arrived at by 1955 made an odd

assumption, that the order of bases in each

triplet was irrelevant. No doubt this was

again motivated by a desire to dispose of

degeneracy, as this scheme effectively did

by collapsing permutation classes, but in

some degree it may simply reflect the

surrounding upheaval: biology was be-

coming an information science even as

information science itself was aborning.

After all, for the first half of the 20th

century the prevailing mindset had been

that DNA comprised repeating identical

tetranucleotides, and that proteins were

amorphous with no set linear sequence

[46]. In his first letter to Watson and

Crick, Gamow even suggested that genes

were not localized, but smeared over the

chromosome like a Fourier transform [34],

his physicist’s instincts flying in the face of

all genetics since Morgan and Sturtevant.

Gamow’s biochemistry was initially just as

naı̈ve. He had scant basis to assume that

exactly 20 amino acids were encoded,

since others were known to occur natural-

ly, if more rarely, and his first list of 20

actually included some of these and

omitted valid ones [37]. Gamow’s quanti-

tative skills and fresh perspective were

valuable and he learned quickly (much like

computer scientists who came to biology

later), but his concerted campaign to

deduce the transcriptional and translation-

al machinery on theoretical grounds seems

a bit feverish in retrospect.

Even Crick was not immune, proposing

a so-called ‘‘comma-free’’ code that uti-

lized relatively few triplets as codons, but

artfully chosen such that only one reading

frame would be possible [47]. By chance,

the math dictated that the capacity of such

an unambiguous comma-free triplet code

would be exactly 20 codons, making the

theory immensely appealing—and dead

wrong in the event. However, comma-free
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codes (as generalized to prefix codes)

assumed great importance in computer

science by way of Shannon’s information

theory, which strove to quantify, charac-

terize, and ultimately ascribe utility to the

very sort of degeneracy with which

Gamow was contending [48]. While these

theoretical excursions of Gamow and

Crick foreshadow the future importance

of Turing and Shannon to bioinformatics,

they also exemplify how beautiful math,

much less numerology, can run afoul of

biological reality. Nowadays it is a truism

that the bioinformatics should not get too

far ahead of the data, yet we see that the

instrumentalist urge to model is nothing

new.

In fact, no amount of computational

modeling or theory could by itself have

discerned the full details of the genetic

code, which by the early 1960s fell to

bench scientists like the late Marshall

Nirenberg to elucidate by means of cell-

free translation systems and radioactive

tracers. The US National Institutes of

Health maintains in its archives pages

from Nirenberg’s lab notebooks, which

include sprawling spreadsheet-like tables

of hand-entered data, with multiple panels

taped together and chaotically annotated

[49]. It appears that he was literally

drawing conclusions directly on the data

sheets, outlining in red pencil the signifi-

cant entries (as indeed might a cryptogra-

pher), such that the genetic code is seen

emerging pictorially from the raw data.

One senses that the carefully arrayed rows

and columns of data, constituting an

exhaustive all-against-all probe of triplet

codes versus amino acids, was a harbinger

of something new in biology; if it were

done today, someone would no doubt

label it the ‘‘codome.’’

Codifying Biology
Gamow’s theoretical instincts were very

much in the mold of Delbrück who, in his

Nobel-winning 1943 paper with Salvador

Luria, confirmed the basic tenets of

Darwinism in bacteria through a profound

interpretation of a trivial experiment [50];

to this end, they deployed reasoning that

anticipated by 40 years the stochastic

coalescent theory now prominent in pop-

ulation genetics and the analysis of poly-

morphism [51]. Physicists and statisticians

brought to the biological table a degree of

comfort with formalism, not only in math

but also in language and logic, that would

also typify computer science. A similar

esteem for logic and formalism was also

apparent earlier in the century in the

philosophical movement called logical

positivism, a major inspiration for Bridg-

man’s operationalism [6,9].

The logical positivists of the Vienna

Circle between the wars felt that the time

was ripe to reduce all of science (in fact all

knowledge) to a pure empiricism, by which

the only admissible statements would be

those verifiable by direct observation. In

the process they rejected all things meta-

physical, and in fact felt that their efforts

should go to serving science by following

in its wake and providing a ‘‘rational

reconstruction’’ of it in symbolic logic and

formalized language. This entailed a

strongly reductionist view of scientific

theories and concepts, and faith in what

Rudolf Carnap called the ‘‘Unity of

Science’’ [52].

Today, when we codify biology in

comprehensive formal ontologies, enforc-

ing the stringent terminological and rela-

tional definitions demanded by computa-

tional structures, we are following in the

footsteps of the Vienna Circle. We should

take heed, because logical positivism did

not survive the half-century. Among many

critics, W. V. O. Quine attacked its

reductionist tenets, holding that science is

more like what he called a ‘‘Web of Belief’’

than a neat logic diagram, with complex

interwoven structures creating mutually

supporting bits of evidence and theory

[53]. (One would be tempted to load it

into Cytoscape.) Quine’s views are more

compatible with probabilistic networks

and connectionism, and with the current

assertions by systems biologists that the 50-

year run of reductionism in molecular

biology has played itself out [54]. Luckily,

bioinformatics is adaptable.

Computing Structures
Crystallographers were early adopters

of computers in aid of their laborious

calculations of Fourier syntheses and the

like, beginning mainly with home-brew

analog computers, but by the late 1940s

gradually shifting to IBM punchcard

tabulators programmed via plugboards

(recognizable descendants of those used

for the 1890 census) [55]. The first

crystallographic applications of stored-

program computers were done on ED-

SAC [56] and the Manchester Mark II

[57] in 1952–1953. However, these were

used for inorganic structures. The first

application of computers to protein crys-

tallography, which some consider the real

forerunner of today’s bioinformatics, was

in fact for the first high-resolution struc-

ture, that of myoglobin, in 1958 [58].

By the 1960s, crystallographers were

enthusiastic users of burgeoning computer

technology, not just for the tedious core

calculations but for many related routines

as well; dozens of codes were written in the

new FORTRAN and ALGOL program-

ming languages, as opposed to being

‘‘hand-coded’’ at machine level [55]. This

activity extended to visualization, includ-

ing interactive molecular graphics first

done by Cyrus Levinthal at the Massa-

chusetts Institute of Technology, using an

early time-sharing mainframe connected

to an oscilloscope display of a wireframe

model controlled by a prototypic trackball

[59]. Of this, Levinthal wrote in 1966: ‘‘It

is too early to evaluate the usefulness of the

man-computer combination in solving real

problems of molecular biology. It does

seem likely, however, that only with this

combination can the investigator use his

‘chemical insight’ in an effective way’’

[59].

Crystallographers went on to accumu-

late myriad structures and from these

gained many ‘‘chemical insights’’ into

life. Since the time of Sturtevant, genet-

icists as well had been doing mutant

screens and maps that were undertaken

not to test hypotheses in the first instance,

but to gather grist for the mill of

hypothesis generation. We tend to think

of data-driven research as a recent

innovation, and of the genome, pro-

teome, and all the other ‘‘omes’’ as

concepts uniquely enabled by technology,

bioinformatics, and audacious scale. In-

deed, omics is sometimes criticized as

‘‘high-tech stamp collecting’’ [60], but

this could also have described Darwin’s

time on the Beagle. In fact, the ground-

work for omics was laid long ago, and

with it the data-rich, information-centric

modality that came into its own with

the advent of computers.

Computing Traits
The first electronic computation of

genetic linkage was performed by H. R.

Simpson at the Rothamsted Experimental

Station (where R. A. Fisher had created the

statistical theory of experimental design) in

1958, on an early room-sized business

model, the Elliott 401 [61]. However, as

noted above and in a recent history by A.

W. F. Edwards [62], this introduction of

computers to genetics was merely the

culmination of a continuous evolution from

Mendel, through Morgan and Sturtevant,

to Fisher and many other statisticians,

theorists, and experimentalists.

The intellectual heirs of Linnaeus and

Darwin were beginning to feel the influ-

ence of computing in this same period,

spearheaded by math. George Gaylord

Simpson, who perhaps most embodied the

‘‘modern synthesis’’ of paleontology, ge-
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netics, and evolution, showed by 1944 how

the mathematics of population genetics

pioneered by Fisher could relate to the

fossil record [63], and brought a focus to

evolutionary rates that presaged the mo-

lecular clock hypothesis central to modern

phylogenetic reconstruction. Simpson had

in 1939 co-authored the first book on

quantitative methods in biology proper

[64], and went on to devise operational

metrics for ecologists to assess similarity of

habitats based on the range of taxa found

in them [65]. (Other statisticians provided

estimators for species diversity within

habitats [66], and ecologists were quick

to adapt Shannon entropy to this purpose

[67], as eventually would bioinformati-

cians for sequence motif analysis.) These

were hand calculations as long as the data

were limited to a few combinations, but

when similarity metrics were adapted by

others to classification of species based on

increasing numbers of traits, the problem

soon grew to become as onerous as had

been the crystallographers’ hand labors.

Computing Trees
A phenetic operationalization of taxon-

omy (i.e., clustering by overall similarity)

invited automation. In 1957, P. H. A.

Sneath first applied a computer to classi-

fying bacteria, using a relatively advanced

Elliott 405 [68]; for readers not so

equipped, he also showed how to simulate

the computations by superimposing pho-

tographic negatives on which the data

were encoded as transparent dots. The

next year he published a follow-up with

the wonderfully Tom Swiftian title ‘‘An

Electro-Taxonomic Survey of Bacteria’’

[69]. Then, in 1960 an IBM staff math-

ematician, Taffee Tanimoto, worked with

David Rogers of the New York Botanical

Garden to apply computers to plant

classification [70]. (Their similarity metric,

bearing Tanimoto’s name, is commonly

used today in cheminformatics to compare

compounds; in fact, by 1957 there had

already been amazingly advanced work

done on computational chemical structure

search by the National Bureau of Stan-

dards for the US Patent Office [71].)

Though the idea of quantifying relation-

ships went back to the previous century,

computers thus helped to precipitate the

new field of ‘‘numerical taxonomy’’ with

the appearance of the 1963 book of that

name by Sneath and Robert Sokal [72],

which also broached the idea of extending

numerical approaches to phylogeny.

As related by Joel Hagen [73], compu-

tational research in classification soon

came to be driven by biological systemat-

ics with its very large datasets of well-

studied characteristics, an existing classifi-

cation system for reference, and cladistic

methods with explicit rules and formal

logic for establishing evolutionary histories

(despite the tension between pheneticists

and cladists, which is still evident in

bioinformatics today). In return, comput-

ers had a prodigious effect on systematics,

shaping the mathematics used, promoting

formality of methods, and most impor-

tantly, enabling the molecular systematics

that was about to explode on the scene. In

a few short years, with the work of

Dayhoff, Fitch, and many others, protein

structures and evolutionary trees would

come together in a powerful synergy that

still informs much of bioinformatics.

Sneath later recollected that population

biologists proved open to numerical tax-

onomy (though Fisher, characteristically,

worried that it didn’t have an exact

statistical basis), while evolutionary biolo-

gists were at first more dubious [74].

Traditional taxonomists felt most threat-

ened of all; David Hull tells of a conten-

tious meeting where one indignantly

asked, ‘‘You mean to tell me that taxon-

omists can be replaced by computers?’’

and was answered, ‘‘No, some of you can

be replaced by an abacus’’ [3]. G. G.

Simpson himself was receptive but, realiz-

ing the tectonic shift that was at hand, was

almost wistful in addressing his colleagues

(quoted in [73]): ‘‘We may as well realize

that the day is upon us when for many of

our problems, taxonomic and otherwise,

freehand observation and rattling off

elementary statistics on desk calculators

will no longer suffice. The zoologist of the

future … often is going to have to work

with a mathematical statistician, a pro-

grammer, and a large computer. Some of

you may welcome this prospect, but others

may find it dreadful’’.

The Bioinformatic Synthesis

Despite Simpson’s ambivalence, the

most salient feature of the development of

bioinformatics has been its success as an

interdisciplinary enterprise. The combina-

tion of biology and computer science seems

increasingly to be syncretic rather than

eclectic—not simply one of juxtaposition

and coexistence, but a substantial merging

of systems with different worldviews, meth-

ods, and cultures. At an even more

fundamental level, beyond any disciplinary

boundaries, it represents a successful syn-

thesis of episteme and techne.

At first, it may have appeared more like a

marriage of convenience than of true

minds. Notwithstanding the examples cited

above, much of the early adoption of

computation by biologists was for purposes

of laboratory information management,

with little sense that it would ever be good

for more than straightforward data acqui-

sition, reduction, and storage. By the same

token, theoretical computer scientists who

first encountered biology sometimes

seemed less interested in nature than in

citing motivating examples for string algo-

rithms or combinatoric problems with little

regard for their practical application.

Happily, as with the mutual stimulation

between biological taxonomy and compu-

tational classification methods, the subse-

quent history of bioinformatics took a

decidedly more syncretic turn, often as a

result of felicitous collaborations.

Even when individuals are willing,

institutions and policies can make or break

cross-disciplinary studies, in any field.

Carnap, the logical positivist, undertook

advanced training in both physics and

philosophy, and wrote a doctoral thesis at

the University of Jena on an axiomatiza-

tion of space-time. Both the physics and

philosophy departments found the work

interesting, but as a dissertation both

turned it away, each saying it was more

pertinent to the other field. A no doubt

exasperated Carnap rewrote it with an

undeniable philosophical cast and received

his degree from that department without

further ado in 1921 [75]. Many who

entered bioinformatics only a few decades

ago might empathize, but it hardly seems

an orphan discipline today, with major

funding initiatives, training programs, and

entire institutes devoted to it.

For reasons such as these, a retrospec-

tive view of the roots of bioinformatics is

likely to be a social history as much as

anything, tracing the interaction of scien-

tific disciplines down to the level of

university environments, scientific con-

claves, individual collaborations, and net-

works of interaction. Indeed, the impor-

tance of the sociology of science to its

progress is considered one of the main

intellectual legacies of Kuhn’s work, even

discounting his theories of scientific revo-

lution [3,9].

The tentativeness and doubt voiced by

pioneers like Levinthal and Simpson have

faded. The insights of Fisher, Turing, and

Shannon now underpin the standard

repertoire of bioinformatics tools. The

theoretical intuitions of Delbrück and

Gamow drive those tools, and the empir-

ical sensibilities of Sturtevant, McClintock,

and Nirenberg are embedded in them.

Whether this is revolution or evolution,

the story of how it came to pass—the roots

of bioinformatics—should make compel-

ling reading.
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